Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells.
نویسندگان
چکیده
Identifying regulators of prostate cancer cell survival may lead to new therapeutic strategies for prostate cancer. We now report prevalent activation of transcription factor Stat5 in human prostate cancer and provide novel evidence that blocking activation of Stat5 in human prostate cancer cells leads to extensive cell death. Specifically, Stat5 was activated in 65% of human prostate cancer specimens examined based on nuclear location of tyrosine phosphorylated Stat5. Adenoviral gene delivery of a dominant-negative Stat5 mutant (DNStat5), but not wild-type Stat5, induced cell death of both the androgen-independent human prostate cancer cell line CWR22Rv and the androgen-sensitive LnCap cell line. Endogenous Stat5 was active in both CWR22Rv and LnCap cells. In contrast, only low levels of inactive Stat5 proteins were detected in the PC-3 cell line, which correlated with resistance to DNStat5-induced cell death. In CWR22Rv and LnCap cells, inhibition of Stat5 by expression of DNStat5 induced apoptotic cell death as judged from morphological changes, DNA fragmentation, and caspase-3 activation with evidence of a caspase-9-dependent mechanism. We propose that blocking Stat5 function may represent a novel therapeutic approach for prostate cancer.
منابع مشابه
ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملEpigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line
Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...
متن کاملRunx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells
Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...
متن کاملRunx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells
Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...
متن کاملAutocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway.
The molecular mechanisms that promote progression of localized prostate cancer to hormone-refractory and disseminated disease are poorly understood. Prolactin (Prl) is a local growth factor produced in high-grade prostate cancer, and exogenously added Prl in tissue or explant cultures of normal and malignant prostate is a strong mitogen and survival factor for prostate epithelium. The key signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 29 شماره
صفحات -
تاریخ انتشار 2003